Il y a beaucoup de façons de multiplier les nombres. Une approche qui a attiré l’attention des gens ces derniers temps est la méthode de multiplication Japonaise. Au début, cela ressemble à quelque chose d’un spectacle de magie. Mais les mathématiques ne devraient jamais se sentir mystique au point de confusion. Et bien que les magiciens ne révèlent peut-être jamais leurs astuces, nous pensons qu’il est essentiel de lever le couvercle sur les raisons pour lesquelles ces méthodes étranges fonctionnent. C’est le seul moyen de les apprécier pleinement!,
comment fonctionne la méthode de multiplication Japonaise?
dans la méthode de multiplication Japonaise, nous sommes capables de compléter un problème de multiplication en traçant simplement quelques lignes et en comptant les points d’intersections. Semble trop beau pour être vrai, non?
prenons 12×32 comme exemple. Rappelez-vous que les nombres sont représentés en utilisant la valeur de place: 12 signifie un dix et deux, 32 signifie trois dizaines et deux.
nous dessinons ensuite des lignes diagonales correspondant aux dizaines et, après avoir laissé un espace, nous dessinons plus de lignes en parallèle pour représenter celles-ci (il est utile d’utiliser une couleur différente)., Donc, pour le nombre 12, nous obtenons:
Tout ce que nous faisons est de prendre la représentation de valeur de place familière des nombres et de la rendre visuelle. Maintenant, faisons le numéro 32, sauf que cette fois, nous irons dans la direction opposée. Vous devriez rester avec une forme de diamant brut, avec les lignes qui se croisent aux coins:
pour calculer le produit, il suffit de compter combien de fois toutes les lignes se croisent et d’écrire chaque nombre sous le diamant.
Commencer par le regroupement des intersections à la verticale., Autrement dit, tracez une boucle autour du groupe d’intersections le plus proche du côté gauche (où les lignes bleue et orange se croisent). Ensuite, commencez à vous déplacer à droite. Tracez une boucle autour des intersections centrales (le rouge et le bleu, et l’orange et le vert). Enfin, tracez une boucle autour des intersections les plus proches du côté droit (où les lignes vertes et rouges se croisent). Ce que vous avez réellement fait est calculé le nombre de centaines, de dizaines et de uns dans le produit:
donc le 12×32 est 3 centaines, 8 dizaines et 4 – en d’autres termes (ou des symboles, plutôt!,) c’est 384.
pourquoi la méthode de multiplication Japonaise fonctionne-t-elle?
réfléchissez à la façon dont vous calculeriez 12×32 en utilisant la méthode standard pour la multiplication longue. Il y a quatre produits plus petits que vous calculez en cours de route:
la méthode de multiplication Japonaise n’est vraiment qu’une manière visuelle de représenter ces quatre étapes. Chaque cluster d’intersections correspond à l’un des quatre produits plus petits qui vont en multipliant deux nombres (par exemple, le cluster gauche, 3×1, est ce qui vous obtient le 300 – ou 3 centaines).,
la méthode de multiplication japonaise est-elle utile?
Très! Basculer entre les représentations est un excellent moyen pour votre enfant de tester sa compréhension d’une méthode particulière. C’est une chose de savoir comment effectuer une procédure (comme une longue multiplication), mais cela n’est utile que lorsque votre enfant sait pourquoi cette méthode fonctionne. Une fois qu’ils ont établi ces liens entre les méthodes symboliques et visuelles, ils seront en mesure d’appliquer leur boîte à outils complète de procédures dans différentes situations.
Votre enfant apprendra à évaluer la méthode la plus appropriée pour un problème donné., Par exemple, la méthode de multiplication japonaise devient très efficace lorsqu’il s’agit de petits nombres – essayez simplement 9×8 et soudainement vous vous retrouvez à compter 72 intersections différentes. Pas aussi efficace que les autres méthodes de multiplication!
la visualisation de la valeur de lieu nous permet également d’explorer certaines propriétés de nombres importantes. Par exemple, nous pouvons littéralement voir comment les nombres d’une colonne se regroupent dans la suivante., Voici 12×15:
Nous pouvons compter les dix intersections de la droite, correspondant à dix, ce qui va dans la colonne suivante, comme un dix. Nous ajoutons cette dizaine supplémentaire aux 7 dizaines déjà là pour faire 8 dizaines au total.
Il y a tellement d’autres méthodes disponibles – considérez chacune comme un autre outil dans l’arsenal de votre enfant. Une fois qu’ils maîtriseront le raisonnement derrière ces « astuces » (le pourquoi et le comment), ils n’auront pas à voir les mathématiques comme un tas de règles mystérieuses., Au lieu de cela, ils apprécieront que les mathématiques sont pleines de modèles intéressants qui se connectent les uns aux autres de manière logique.